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ABSTRACT

If & is 2 probability measure on a countable group there is defined a notion of
the Poisson boundary for u which enables one to represent all bounded
p-harmonic functions on the group. It is shown that for discrete groups of
matrices this boundary can be identified with the boundary of the corresponding
Lie group.

The behavior at infinity of a countable group G is partly described by
boundaries. We consider here Poisson boundaries of random walks on T: Let u
be a probability measure on G, and call a function h on G p-harmonic when for
any g in G,

h(g)= g;c h(gg (g

A Poisson boundary is a compact probability space on which G acts and which
represents all bounded harmonic functions by a formula analogous to the
Poisson representation of harmonic functions on the disk. (See [5] and [8] for a
detailed recent study.)

The Poisson boundary reflects properties of the group itself: for instance, it is
trivial if G is abelian [2] or nilpotent [4], but examples show that it can be
non-trivial even when G is amenable [8]. It can also be described when G is the
free group with k generators [4]. It also reflects how the group can be imbedded
in other groups: Furstenberg proved that if G is cocompact in SL(d,R), there
exists a probability measure on G such that the Poisson boundary is the
Furstenberg boundary with its natural probability measure (see [5]). These
results extend to lattices in semi-simple Lie groups and to other probabilistic
questions (see [6], [11], [7]).
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Using a different approach, Series [14] could describe the Poisson boundary
(and even the Martin boundary, corresponding to positive harmonic functions)
for a large class of Fuchsian groups.

Here we consider a general discrete group of invertible real square (d X d)
matrices and following one of Furstenberg’s approaches (see [7], [3], [8]) we use
an entropy criterion. We shall require a boundedness condition, namely

> logllglle@<+x, Y loglg™lu(g)< +=,
8€EC 8EG

and a non-degeneracy condition, namely that the semi-group generated by
supp u is the whole G. There is a natural boundary in this case, which is some
quotient of the space of d-dimensional flags, and a natural invariant measure on
it, both defined by using Lyapunov exponents of the random walk. We shall
prove here that this boundary is a Poisson boundary, thus recovering some
geometry of G only by looking at it as an abstract group. Like in [9], where we
proved the same result for SL(2,C), we use heavily Oseledec theorem to
compare entropies with dimensional quantities on the boundary.

During the preparation of this paper, I have taken advantage of stimulating
discussions with Philippe Bougerol, Laure Elie and Yves Guivarc’h and I thank
them sincerely.

I. Notations and results
L1. The natural boundary

Let u be a probability measure on a locally compact separable group G. Let S
be a compact metric space and (g, x)— g - x a continuous action of G on §
(e'x=x and g-(h-x)=(gh)-x). If p is a measure on S, let g - p denote the
measure defined by g - p(f) = [ f(g - x)p(dx) for all continuous real functions f
on S. We shall call (S, p) a (G, u)-space if p is an invariant probability measure,
i.e., if [g-p(f)u(dg)= p(f) for all continuous f.

Let us consider the product space ({2, P) of an infinite sequence of copies of
(G,n). The (G,pn) space (S,p) is called a boundary if for P-ae. w=
{81, 8., 8.} the sequence of measures p, converges weakly towards some
Dirac measure 8z(.), where p, = g(- g+ -+ - g - p. If it is the case, it is clear by
Lebesgue dominated convergence theorem that the law of the variable Z on S is
p, which means the following relation: [ f(Z(w))P(dw) = p (f) for all continuous
functions f on S.
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We suppose from now on that G is a subgroup of GL(d,R) and
[togIglutdg)< +=, [ 10glg™ Iutdg)< +.

Denote A*g the operator acting on A“R* canonically associated to g. The
exponents are reals numbers A, Z - -- Z A4 such that

& 1
Z)L.-—!‘l_lnglog

i=1

k
A g“u‘"’(dg),

where u ™ denotes the n-fold convolution of u, p™@=pu" P+ pu, n=2,... (see,
for instance, [10]). The norm || || will always be the euclidean operator norm.

Let us denote P the group of matrices in GL(d,R) with p; =0 when A; < A,
and B = GL(d,R)/P the corresponding homogeneous space. The space B is
compact metric and G acts continuously by left multiplication.

Let 0<ji<j,<---<j,=d be the indices with A, > Ay, i=1,...,r—1.
Points in B are in one-to-one correspondence with the following filtrations of R¢,
{0}CE,CE,C---CE, =R* withdimE; =, i =1,...,r and G acts naturally on
this representation. A matrix v belongs to the class of b iff its column vectors v;
satisfy: vy,..., v, generate E;, i =1,...,r.

The following “cocycle” does not depend on the choice of the matrix v in the
class of b:

0i(g, b) = log 1= , i=1,...,r

PROPOSITION 1. There exists a unique invariant measure v on B such that

Ija;(g,b)v(db)u(dg)=,z;kk, i=1,...,r

The (G, ) space (B, v) is a (G, u)-boundary.

We call the (G, p) space (B, v) of Proposition 1 the natural boundary.

A measurable bounded function h on G is called p-harmonic if h(g)=
J h(gg)u(dg’) for all g in G. We consider the space # of u-harmonic functions,
with uniform norm. A (G, p) space (S, p) is called a Poisson boundary if there is
an isometry u : # — L™(S, p) such that all harmonic functions have the following
Poisson representation:

he)= [, () L2 (w(dx).
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Our main result is the following:

THEOREM A. Let G be a discrete subgroup of GL(d,R), p a probability
measure on G satisfying 2clog ||g || n(g)< +=, s log g™ [ n(g) < +, and
U.suppp®=0G.

Then the natural boundary (B, v) is a Poisson boundary.

In particular we can specify:

THEOREM B. Let (G, r) be as in Theorem A. Suppose all exponents coincide
Ay = Aa. Then all bounded harmonic functions are constant.

L2.  Entropy

The proof of Theorem A uses several notions of entropy.
First let us consider a countable group G and a probability measure u. We put
H(u)= —Scp(g)logu(g) and if H(u)< +e,

h(G,w)=infmH(®)  (eet])

Suppose G is a discrete group of matrices, u a measure such that
Sologllgllu(g)< +=, Sclog| g™ |mu(g)< +. We shall estimate h(G, u)
through some geometric quantity on the natural boundary (B, v). We need some
technical definitions. Consider the sequence A= - - - = A, exponents and let n, 8
be positive real numbers. Two orthogonal matrices k and k' are said to be (n, 8)
close if the general entry u; of k~'k’ is such that for all distinct values A, g

) |ty = exp(=2n(|A = ]|~ B))
1D | A=A a=p}

Two points b and b’ are said to be (n, §) close if all orthogonal matrices k and
k’ in the class of b and b’ respectively are (n, §) close. The property depends

clearly on b and b’ in a symmetric way. We denote U,;(b) the set of points in
B(n, 8) close to b, we call

&(B,1,8,¢)= inf{t

lirgl_’inf v(E(t,q,86)=1- s]

where
E(t,q,8)={b | v(Uys(b)) = exp—qt}
and ¢(B, V) = limax.o hme ~0 ¢(B, V’ 6’ E)'
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In other words ¢ (B, v) is the best upper estimate for the limit in measure of
—(UUq)log v(Ue(b)). (If d=2, A#A;, we know that the sequence
— (1/q)log v(U,q(b)) converges in measure [10].)

PROPOSITION 2. Let G be a discrete group of matrices, p a probability measure
on G, with

2loglglulg)<+,  loglg|n(@)< +=,

(B, v) be the natural boundary, then

h(G,p)= ¢(B, ).

On the other hand, let us consider a probability i on a locally compact group
G and (S,p) a (G, u)-space. We call entropy of (S, p) the quantity «(S, p),

asp)=-[ log % p(w)o (@ )u(dg)

The entropy a(S, p) is positive, finite or infinite.

PROPOSITION 3. Let p be a probability on GL(d,R), with [log | g |l (dg)<
+, flog| g™l m(dg)< +» and (B, v) be the natural boundary. Then

¢(B,v)=a(B,v).

Propositions 2 and 3 are the two entropy estimates we shall prove. Theorem A
is then a clear consequence of Propositions 2, 3 and 4:

PrOPOSITION 4. Let G be a countable group and p a probability measure on G
with H(p)< +o and U, suppp™”=G. A (G, n)-space (S,p) is a Poisson
boundary as soon as

() (S,p) is a boundary,

(i) a(S,p)=h(G, ).

Proposition 4 is due to Vershik and Kaimanovich [8] (see section 3.2; see also
BD-

We shall first recall Oselede¢’ theorem and prove Proposition 1 by construct-
ing the natural boundary out of the filtration it gives. The proof of Propositions 2
and 3 will then consist in translating geometrically on ¢ (B, v) the estimates given
by Oseleded’ theorem.

Remark now that if A, = A,;, P=G and B is reduced to a point. Any two
orthogonal matrices are (n, 8) close and ¢ = 0. Proposition 3 is then trivial but



324 F. LEDRAPPIER Isr. J. Math.

Proposition 2 makes sense and says that h(G, 1) =0 in this case. Thus for a
direct proof of Theorem B, section 1.3 and 2 are not needed and the arguments
in section 3 are simpler.

L3. Oseledec’ theorem and proof of Proposition 1

Let u be a probability measure on GL(d,R), with flog ||g ™' || x(dg)< +,
Jlog || g | (dg) < + = and denote ({1, P) the infinite product of Z-sequences of
copies of (GL(d,R), ), 0 the inverse shift transformation: (06); = @;_, i EZ,
and A the matrix A (@)= (&-,)".

The exponents of the system (Q,P, 0, A) are the numbers — A, = — A4y =
-++Z — A,. By Oselede¢’ theorem, there exists a subset E, of O, P(E,) =1, such
that if @ € E, and if we write a Cartan decomposition of the matrix @_,* - - .} =
L.A.K,, where L, and K, are orthogonal, and A, diagonal with increasing
diagonal entries §{"(@)=--- = 8§ (@), then:

G E&%kmﬁﬂéy=—M j=1,....d

(ii) Let K(@) be any limit point of the sequence K,(w), then for all §, K;'(@)
is (n,8) close to K™'(@) for n large enough.

(iii) Let b(@) be the class in B of K™'(@). This is the only point b in B such
that for any matrix v in the class of b, and for i =1,...,r,

i

==\

j=1

Lim % log ( A (@ a'):})) (V1A AY)
Some of these limits are strictly bigger for b# b(@).
(iv) The map b : }— B is measurable with respect to the o-algebra generated
by the coordinate maps @ = @_, i >0.
(v) There exists a measurable decomposition of RY R‘=
W'(a)D Wi a)D - @ W’ (o) such that a vector v # 0 belongs to W' (@) iff

lim < log @, - - @ov | = A,

n—+o n

and

lim lﬂog“wi}--éﬁv"=-—Ak

a4+ N

Up to notations, Oselede¢’ theorem is proved in this precise form in [12] (see
also [13] and [10] §1.3). Remark that here the diagonal entries in A, are
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increasing and that is why the column vectors of K '(@) give the Oseledeé
filtration when read from left to right (and not from right to left as usuaily when
the entries of A, are decreasing).

Let us choose once and for all in a measurable way a matrix w (@) with column
vectors w, (@), k = 1,...,d such that the vectors wi (@), k = ji_, +1,...,j form
an orthonormal basis of W'(@). A matrix v belongs to the class b(@) iff there
exists some p in P such that v = w(&)p.

We now use this result to prove Proposition 1. When proving Propositions 2
and 3, we shall keep in mind the construction and the properties of the natural
boundary that we describe now.

We consider 6 : 0 x B defined by

6(@,b)= (0", @ob)
and the functions (@, b) = 0:(@o, b).

LEMMA 1. The measure M(da,db)=P(d)8,.(db) is the unique 8-
invariant measure on Q x B which projects onto Q) into the probability P and
satisfies:

. B
j&i(a,b)M(d@, db)=> %, i=1,...,r
i=1

PROOF OF LEMMA 1. If M is any g-invariant probability measure on ) X B,
which projects into P, we have for M a.e. (@, b) any matrix v in the class of b,
any i=1,...,r

(k((BZ},--~aGZL)(vIA---Avji)

11m 1 log

'=1i91 %a..(a-,:;- &2, b)

=|r~

2 3 00 (@,b)

= a,-(a-), b)
with [ ai(@, b)M(d®, db)= — [ G:dM.
Property (iii) above tells that these limits can be —Z}_; A; only if for P-ae. @,
the conditional measure M is carried by b(@). The only possible measure is

thus M(d@, db) = P(d@ )8y(db).
This measure is invariant because b(8@)= &@_i1b(®) and consequently:

j f. 6dNt = f (073, @ob(&))P(de) = f 1(@, 3-1b(60))P(d)
- [ f@ b@yPiaa) = | fam. .
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We prove now Proposition 1: consider the compact space B. By compactness
there exist p-invariant probability measures on B and for any such measure v,
we make the following construction.

Let us project & X B on QX B by 7, where (Q,P) denotes the one-sided
product space corresponding to the positive coordinates in (€, P). There is a
unique -invariant measure M on ({ X B) such that M o w~' = P X v. Therefore
by Lemma 1 there is at most one invariant measure » such that the correspond-
ing M satisfies [ G.dM = Zh_, A,

This proves the uniqueness of » because &; factorizes in o; by #. This proves
also the existence of v because by property (iv) the measure Mon™' =
(P8,)o ' is the product measure P x v of P and the law v of b.

Furthermore the actual construction of M by extending successively P X » to
all o-algebras 6"m (s ® B) gives that the martingale of conditional measures
@_1* " @_,v converges P-a.e. towards the conditional measures of M, i.e. 8,.).
This shows that (B, v) is a boundary, because under P, the sequence {@-, i > 0} is
also an independent sequence of matrices with common law pu.

This finishes the proof of Proposition 1. We aiso know that the measure v is
the law of the point b(®) considered in Oselede¢’ theorem. Remark also that by
construction the systems (0 X B, M, #) and (2 X B,P X », §) are ergodic.

II. Dimension estimate
2.1. Geometry of B

We fix in this section a sequence A, = - - - = A, and consider the corresponding
space B and the corresponding notion of (n, 8) closeness on B. We prove several
properties of these objects; Ci, C;, C; will be constants depending only on d and
on the fixed sequence A, Z--- = A4

Let K be the group of orthogonal matrices, M = K N P; the Iwasawa
decomposition of matrices GL(d,R) = KAN identifies P with MAN and B with
K/M. A point b in B is thus identified with the class kM of orthogonal matrices
in b.

LEMMA 2. The points b and b’ are (n, 8)-close as soon as there is some pair
(k, k') of orthogonal matrices in the classes b and b’ respectively, and k and k' are
(n, 8)-close.

The proof is easy: it consists in checking that if k and k' are (n, §)-close, m
and m' are matrices in M, km and k'm’ are also (n, 8) close. ||
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A subset E of B is called (n, §) separated if any two distinct points in E are
(n, 8) apart. Recall that U,;(x) is the set of points (n, §) close to x.

LEMMA 3. There exist constants C,, C, such that if E is (n, 8) separated, and x
any point in B, then U,;(x) contains at most C,C5’ points of E.

ProoF. Let b and b’ be points in U, s(x) and k and k' orthogonal matrices
such that

b=kM, b'=k'M
We claim that if the general entry w; of x7'(k' — k) satisfies
]wi,‘lééexp(—n!/\,ﬁ)t,-b forl=ij=d,

then b and b’ are (n, §)-close.
Actually we have

k'k'=k7'xx k' = Td+k x(x (k' = k).

If v; (respectively u;) is the general entry of k 'k’ (respectively k~'x), and if
A, p are two distinct real numbers,
E

2
2 Uik Wi l
((i.i)|)x,-¢)‘,)\,-=#) {EIA =2 =p} k

l 2

Wy | €X -2n Y
d’ «i.i)u.-:zmiﬂ, Z | wac [* exp( lu— A ])
1

IIA

<= ( 2 e*2n|)\fu|e2n8 + e—2nM~pL|).
d {kir #A} kA =A}

This implies that k and k' are (n, §) close and the claim follows by Lemma 2.
For any e in E N U, ;(x) the general entry uj of the matrix x 'k, satisfies:

luj|=exp(—n| A —A; |+ nd).

Therefore by the claim, for any i, j, 1 =i, j = d, the sequence {uj, e € E} can
take only 2de™ different values. There are at most (2de™)* different possible e
in E N U, s(x). This proves Lemma 3 with C, = (2d)*, log C, = d°. |

LEMMA 4. Let v be a probability measure on B, 8 >0, ¢ >0. For n large
enough, there is a set E, with

v(Uns(E.)Z1—¢,

% logcard E, = ¢(B,v,8,£)+ 6 + 8 log Cﬁ—%log Ci.
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PrROOF. By definition of ¢(B,»,8,c)=¢, for n large enough,
v(E(¢ +8,n,8))=1-¢. Let us choose E, a maximal (n, §) separated set in
E(¢ +6,n,6).

By maximality U, ;(E.) contains E(¢ + 8, n, 8) and thus v(U,s(E.)) =1 - ¢.

By definition of E(¢ + 8, n, §), we have:

card E,e "= Y »(U,s(x))

x€E,

< f card{E, 0 Una(y)}v(dy)

=CC?® by Lemma 3. ]

Lemma 4 will be used in the proof of Proposition 2 (see section 3.1); the
following lemma is basic in the proof of Proposition 3. When r > 1, we denote

[ iﬂf{Aii ~A

i=1,...,r—1}

Ji+1
(Remember Proposition 3 is trivial if r =1.)
LEMMA 5. Let us suppose r >1 and consider m >1, 0< y <p/12.

Let u be some matrix, with column vectors w,,...,u; such that for all
p=1,...,4d, all p-uples 0<i,<i,<---<i,=d,

‘llog o, A -e oA wy ||—i)h'§x.
m i=1
Write u = kan the Iwasawa decomposition of u, t; the general entry of an. There

exists a constant Cs, such that for all (i,j) with A, Z A;

_1- 2 __ < Q
‘2’” lOg 2 |t1_,'| A,'-_—2X+m

{HA=a;}

ProOF. We construct the Iwasawa decomposition and consider the matrix
t=k'u

It has the following properties:

=0ifi>jandforall p=1,...,d, all 0<i;<i,<---<i, =4,

lon--nt l=lwn-nwl.

This implies for i =j,, |t ||=| u:|| and therefore

=X

1
| oglat-n,
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Put C(x)=(1-¢“™)" and consider j > j;:

ltinton---ntat] _ om0
ltintan--- /\thll T51=¢

and this means that most of the norm of # is achieved by the first j, coordinates.
More precisely:

iy
(S14F)/1ap=1-e = c00
Hence:

1 N log C(x)

and this estimates the first j; lines of .
Letk =1,...,r—1.The (d — j. X d — j,) matrix t' obtained by erasing the first
Jx lines and columns of ¢ has the following properties:

=0 ifi>j je<ij=d

andforallp =1,...,d —ji, all p-uple (is, ..., i) with i < i, <i,<:--<i, =d,

[tinton- At At AL

!
lthn---nt,l= Ttnton - at,]

In other words the matrix ¢’ satisfies the same family of relations as ¢ with
exponents A, == A, and error 2y.
We get in the same way for ji <j = jin

e+

‘—log 3‘»‘!2‘&;’§2X

i= ’k+

and for j > ji

Jk+1

1 ey | =so . logCRx)
P log .~=;+1 T —A =2+ e

The lemma follows if C; = —log(1 — e *"?). [ ]

2.2.  Proof of Proposition 3

We suppose in this section that p is a probability measure on GL(d4,R),
satisfying [log ||g | n(dg)< +=», [log|g'lm(dg)< +=», we consider the
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natural boundary (B, v) and are going to prove that ¢ (B, v) = « (B, v). The idea
of the proof is the same as in dimension 1 ([10] §1I1.4): a typical product w, -  * @,
sends some set of fixed positive measure into some U,; and dw, - - - wov/dv is
roughly exp(— na (B, »)). This is possible only when ¢(B, v)= a(B, v). To do
this, we first apply Oselede¢’ theorem, as stated in section 1.3 and we consider
the map b from E,CQ into B we defined there.

LEMMA 6. There exists a measurable map u : E,— GL(d,R) such that
(i) u(w) belongs to the class of b(@),
(ii) forall p, 1=p=d, all p-uple 0<i, <i,<---<i, Zd,

lim 1 log

n—o+e

(/’( (@, a')o))(u,»,((f))A AU (@) ” =ZA,..

PrROOF. Remember that we choose in a measurable way a matrix w(&) such
that its column vectors are in the spaces W'(@). A matrix u satisfies (i) iff
u(w)= w(ao)q(o) for some q(@) in P. Choose some fixed matrix g in P such
that for all p, 1 = p = d, the determinants of all the (p X p) square matrices made
out of the first p lines of q are never zero. The matrix u(®) = w(@)q satisfies
also (ii). [ ]

Fix @ in E,; the set of matrices satisfying Lemma 6(ii) is open in GL(d, R) and
there is a smaller neighborhood of u(®) where the convergences are uniform.
The condition || o™" || <2]|u™" (w)| is also open and the projection from GL(d, R)
into B is open. Consequently:

CoroLLARY 1. For all @ in E,, there exist a neighborhood O(®) of b(@) in B
such that for y >0, there exists N (@, x) and for all b in O (&) there exists a matrix
v in the class b satisfying v’ |<2|u"'(w)| and for all n = N(®, x), all p,
l=p=d, all p-uple 0<i, < ---<i, =4,

j=1

llog /p\(a'),.‘--a‘)o) (vn--rwy)
e )

LemMMA 7. Fix 8 >0, ¢ >0. There exists an integer N such that foralln = N,
P({@n-1 - 300 (0)C U, s(b(0 @)= 1—£/2.

PrOOFOFLEMMA 7 (compare with [10] lemma I11.4.5.). We first choose N, by
Corollary 1 such that P(A)=1-¢/6, where A, = {@ | N(@, 8/40d)= N,}. For @
in A,, b in O(@) and n = N, there exists a matrix v in the class b satisfying the
conclusions of Corollary 1.

Choose also N, such that P(A,)=1— ¢/6, where
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i} - 5
A2={“’ [log2||u '(w)llész]

and u(®) is given by Lemma 6.

Write also a Cartan decomposition of the matrix &, - &=
L.(#)A. (&)K. (®). By 1.3 there exists n(@) such that if n = n(w) and K(&) is
any orthogonal matrix in the class b(®),

1 ")y - 8
;l-logﬁf- @)+ A,l§m,

[

! W -
- log lui (@)= =1 — A |+T0—d_’

where 8{"(®) are the diagonal entries of A.(®), u{(®) the entries of
K. (@)K(®).

Choose N; such that P(A;)=1— £/6 where A,={@ ln(a’;)g N3}, Choose
now N bigger than N,, N;, N3, 20C:d /8, and (2log C,)/8, Cs=d! d*, and for
nz N take @ in A\NA,;N0"A,.

Lemma 7 is proved if we show that for all b in O(®), -1 @0 b is
(n, 8)-close to b(6 "®).

Choose v in b according to Corollary 1. We thus have to estimate the entries
S; of the matrix k'K(6™"@), where k is the orthogonal term in the Iwasawa
decomposition of @,_; - @yv = kt.

We get

— -1 --1 -
k l=tU wWo '--w..l.l

=t 'L.(0"®)A.(0"®)K. (0 "®).
By Lemma 5, Corollary 1 and our choice of N; the entries ¢; of the matrix ¢
satisfy #; =0 for i >j and |#; |[<expn(A + 8/10d) for i =]j.

By Corollary 1 and our choice of N, the entries x; of v™'L,(0 "®) satisfy for
all i, j

| x5 | = exp n(8/10d).

By our choice of N, the estimations on 8! and u{" are also valid. (Remember
073 € As)
We get finally for i > j:

Si= 3 tutkadR(070)uiN0D)
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and

nA. —nA —nfA.—x | _4nd/10d
1Si|= e™ie MmN Anle

§d2e4n81l(ld n(Ai—A’._)

[4

because A. +|A;— A, |ZA; for all m. This gives estimates for the entries of

k™'K(0"®) below the diagonal. Since it is an orthogonal matrix, we find for all
entries S;;:

| S | = (d —1)1d* e "N

né _—n{A —A|

i—e e "% by our choice of C, and N.

=

This proves that the matrices k and K(0 ") are (n, §)-close. By Lemma 2,
this achieves the proof of Lemma 7. n

Lemma 8. For P-a.e. @,
a(B, v)Zlim sup —%log W @uor -+ 3s0(@)).

PrOOF OF LEMMA 8. We apply the ergodic theorem to the system ({2 X B,P X
v, §) and the function — log(dws'v/dv)(b). We get PX v a.e. and in L'(P X v):

a(Bv)—hm——};l d"" 405 Vi o w0 b)

dwo' - - w;l“y(b).

=lim—1
—ll'r.n nlog o

Call E; the set of @ in ) such that the sequence of classes of functions on B

1 ded' el ]
{ nlog—-——————d (b),n>0
converges v-a.e. and in L'(v) towards a(B, v). We have P(E,) = 1.

Now if w(@)€ E; and »(O(@))> 0, we have:

11 dos' - wliv
a(B, v)—h"m 7 70@) L(mlog — % (b)v(db)

and therefore the conclusion of Lemma 8 is true for such an ®.
For P-a.e. &, m(&)€ E, because Pow ™' =P, and for P-a.e. &, v((O(3))>0
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because O() is a neighborhood of b(&) and the law of b is ». This achieves the
proof of Lemma 8. |

Proposition 3 follows now clearly from Lemmas 8 and 7: fix § >0, ¢ >0.If n
is large enough, we have on a set of probability bigger than 1—¢/2

V(@aor @O0 (@)) Z exp(— n(a(B,v)+¢g))
and we also have on a set of probability bigger than 1 — £/2, if n is large enough,
@n-1° " @O0 (@) C U, (b (0 "@)).

In other words (remember the definition of ¢) if n is large enough, there is a
set of probability bigger than 1-¢, such that b(6"@) belongs to
E(a(B,v)+¢,n,8). Since the law of b(0 "®) is also », this means exactly
&(B, v, 8, €)= a(B, v) + &. Proposition 3 follows from the arbitrariness of §, .

III. Entropy of discrete groups

3.1.  Entropy estimate

We suppose in this subsection that G is a discrete subgroup of GL(d,R) and
we consider on GL(d,R) the following pseudo-distance d:

d(g:, g:) = max (log || g:1g2" ||, log [ 8.8+ I])-

We shall use discreteness of G only through the following property: there
exists a constant Cs such that a subset of GL(d,R) of diameter L contains less
than C¥ elements of G, if L = 1.

ProrosiTiON 5. Let G be a discrete subgroup of GL(d,R), n a probability
measure on G such that

2loglgllu(g)<+e=  Yloglg™|n(g)< +.

Then —Z p(g)logu(g)<.

The proof of Proposition 5 is straightforward: call G, the set of elements g of
G such that n = d(e,g)<n +1, and set u, = u(G.). We have 2, n, < +® and
H{(y) can be bounded by

- 2;1,,, log p, + 2[1.,, log(card G,) = — Ep,,, log . +log Cs Z(n + D,

< 4o, |
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By Proposition 5 we can define
h(G, )= inf - H(u").

LEMMA 9. Let X be an orthogonal matrix, A\ Z - - - Z A, real numbers, § >0,
n = (log d)/8; there are less than Ci’™ elements of G which can be written L AK,
with L and K orthogonal, A diagonal, K'(n,38) close to X, and

=5 j=1,...,d

1
';log6,+/\,«

PrROOF. We have only to check that the diameter of the set of matrices LAK
satisfying these properties is smaller than 10n6. Let g, = L,A K|, g.= L,A;K; be
two such matrices. We have

lgigz' =l LiAKIK;'A L5

= ||A|I<|)(X>II<271A2_I ”

The general entry of K, XX 'K;' is smaller than

S expl—n(IA ~ A [+ | A~ & |~ 63)] = exp[ ~ n(|A = &, |~ 78)]

and thus
log [[gig:"11=10n8 +sup [~ n(JA =4 | =4+ 4)]
= 10né.
The computation is the same for || g,g7" || n

We are going now to prove Proposition 2. We consider a probability measure
p on G such that 3¢ log [|g | n(g) < +, 25 log [|g || m(g) <.

We apply 1.3 and consider the natural boundary (B, v) and the product space
(Q,P). We know that v is the law on B of some variable b.

By Proposition 5 and the subadditive ergodic theorem, at P-a.e. &:

li@x—%logP{w’ o 0 =6 @)= lirpm—% log " (@-1 "+ @-n)
= h(G, n).

If we write again the Cartan decomposition of the matrix

&b &7 = L(@)A (@)K (@)
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we have estimates on the diagonal terms of A, (@) and of the (n, §) closeness of
K. (®) and X(@)E b(w@) when n is large enough.

Fix 8§ >0, 0< & <i. By Lemma 4 if n is large enough, there exists a set E,
with v(U.s(E.))Z1—¢ and

CardE Clcnsena ndJ(Bv)
Putting all these properties together, we have if n is large enough, P(Qi(n)) =
1—¢,i=1,2,3,4, where:

@ | the diagonal terms 8{(@) of A, (@) satisfy

(n) = ;
[(1/n)log 8 (0)+A;|=6,j=1,...,d
Q(n)={o l K.'(®)is (n, &) close to any orthogonal matrix in b(@)},
Qu(n)={a | b(&) € U.s(E.)},
Qun)={@ | p" (& G-,) S e ™Ce),

If n = (2logd)/3, for any @ in x(n) N Qi(n), there exists some x in E, such
that K,'(@) is (n,38) close to any orthogonal matrix in x.

Fix x in E,, X orthogonal matrix in x and call Q, the set of @ in [, Q:(n)
such that K; (&) is (n,38) close to X.

By Lemma 9, P({},)= Ci"e ™ ™ Therefore we have, if n is large

enough,

-4 =B (N Q(n))

dl
2 P(Q.)

x€E,

A

é Clcf’lse nse ndz(B,u)C?ln5e~nh(G‘u)e nb‘.
We get by letting n go to infinity
¢(B,v)— h(G,u)= — 82 +1log C,CY)

and Proposition 2 follows from the arbitrariness of 8.

3.2.  Kaimanovich-Vershik results and Proposition 4

Consider a countable group G and a probability u on G, U, suppu™ = G.
We recall Kaimanovich-Vershik results [8] leading to Proposition 4.
To every (G, p) space (S, 8) they associate its Radon-Nikodym transform. Itis
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a compact metric (G, u) space (E, A) isomorphic as a measure space to the
quetient of (S, p) by the measurable partition generated by the Radon-Nikodym
derivatives Ag on S, g € G:

Ag(s)=%§)2(s) p-a.e.

They also construct abstractly the Poisson boundary (I, v), prove that
a(S,p)=h(G,p)  forall (G, pn)space (S, p)

and that if a(S,p)=h(G,un), then the quotient map from (S,p) to its
Radon-Nikodym transform (£, A ) factorizes through (T, ») ([8] Theorem 3.2).

If (S, p) is a boundary, the function Ag, g € G separate p-a.e. point and thus
the quotient map defining (E, A) is an isomorphism.

Under the condition of Proposition 4, (8, p) is therefore isomorphic to (', »),
in other words (S, p) is a Poisson boundary.
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