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ABSTRACT 

if g is a probability measure on a countable group there is defined a notion of 
the Poisson boundary for g which enables one to represent all bounded 
g-harmonic functions on the group. It is shown that for discrete groups of 
matrices this boundary can be identified with the boundary of the corresponding 
Lie group. 

The behavior at infinity of a countable group G is partly described by 

boundaries. We consider here Poisson boundaries of random walks on T: Let/~ 

be a probability measure on G, and call a function h on G/z-harmonic  when for 

any g in G, 

h ( g ) =  '~  h(gg') l~(g') .  
g 'EG 

A Poisson boundary is a compact probability space on which G acts and which 

represents all bounded harmonic functions by a formula analogous to the 

Poisson representation of harmonic functions on the disk. (See [5] and [8] for a 

detailed recent study.) 

The Poisson boundary reflects properties of the group itself: for instance, it is 

trivial if G is abelian [2] or nilpotent [4], but examples show that it can be 

non-trivial even when G is amenable [8]. It can also be described when G is the 

free group with k generators [4]. It also reflects how the group can be imbedded 

in other groups: Furstenberg proved that if G is cocompact in SL(d,R), there 

exists a probability measure on G such that the Poisson boundary is the 

Furstenberg boundary with its natural probability measure (see [5]). These 

results extend to lattices in semi-simple Lie groups and to other  probabilistic 

questions (see [6], [11], [7]). 
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Using a different approach, Series [14] could describe the Poisson boundary 

(and even the Martin boundary, corresponding to positive harmonic functions) 

for a large class of Fuchsian groups. 

Here we consider a general discrete group of invertible real square (d x d) 

matrices and following one of Furstenberg's approaches (see [7], [3], [8]) we use 

an entropy criterion. We shall require a boundedness condition, namely 

~ log Ilgll~(g)< +o0, ,~ log Ilg-'lltz(g)< +oo, 

and a non-degeneracy condition, namely that the semi-group generated by 

supp tt is the whole G. There is a natural boundary in this case, which is some 

quotient of the space of d-dimensional flags, and a natural invariant measure on 

it, both defined by using Lyapunov exponents of the random walk. We shall 

prove here that this boundary is a Poisson boundary, thus recovering some 

geometry of G only by looking at it as an abstract group. Like in [9], where we 

proved the same result for SL(2,C), we use heavily Oselede~ theorem to 

compare entropies with dimensional quantities on the boundary. 

During the preparation of this paper, I have taken advantage of stimulating 

discussions with Philippe Bougerol, Laure Elie and Yves Guivarc'h and I thank 

them sincerely. 

I. Notations and results 

L I. The natural boundary 

Let/~ bea  probability measure on a locally compact separable group G. Let $ 

be a compact metric space and (g,x)--->g .x a continuous action of G on S 

(e �9 x = x and g .  (h �9 x) = (gh). x). If # is a measure on S, let g .  p denote the 

measure defined by g .  p ( f ) =  f [ (g .  x)p(dx) for all continuous real functions )r 

on S. We shall call (S, p) a (G, tt)-space if p is an invariant probability measure, 

i.e., if f g .  p(/ ) /z(dg)= p(f) for all continuous [. 

Let us consider the product space (f~, P) of an infinite sequence of copies of 

(G,~).  The (G,/~) space (S,p) is called a boundary if for P-a.e. to=  

{g~, g2,. . . ,  g~,.. �9 } the sequence of measures #, converges weakly towards some 

Dirac measure 8zc,~, where p, = g~. g2 . . . . .  g~ �9 p. If it is the case, it is clear by 

Lebesgue dominated convergence theorem that the law of the variable Z on S is 

p, which means the following relation: f [(Z(to))P(dto) = p (f) for all continuous 

functions [ on S. 
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We suppose from now on that G is a subgroup of GL(d, R) and 

log Ilglltz(dg)< +o0, f log IIg-'lltz(dg)< +oo. 

Denote A k g the operator acting on A k R~ canonically associated to g. The 

exponents are reals numbers A I =>""--> ~t~ such that 

~ A~ = lira -- log g ~(")(dg), 
i=1 n--*| n 

where ~ " )  denotes the n-fold convolution of /z , /z  (n) = p.~n-~)./z, n = 2 . . . .  (see, 

for instance, [10]). The norm II II will always be the euclidean operator norm. 

Let us denote P the group of matrices in GL(d, R) with pji = 0 when ;ti < ;tj 

and B = GL(d, R)/P the corresponding homogeneous space. The space B is 

compact metric and G acts continuously by left multiplication. 

Let 0 < il ( h ( ' ' "  ( /r = d be the indices with At, > a~+~, i = 1 , . . . ,  r - 1. 

Points in B are in one-to-one correspondence with the following filtrations of R d, 

{0} C Et C E2 C - . .  C E, = R d with dim Ei = j~, i = 1 . . . .  , r and G acts naturally on 

this representation. A matrix v belongs to the class of b iff its column vectors or 

satisfy: ot . . . . .  v,-, generate Ei, i = 1 . . . . .  r. 

The following "cocycle" does not depend on the choice of the matrix v in the 

class of b: 

k=l , i = 1  . . . . .  r. 
o,g ii 
There exists a unique invariant measure v on B such that PROPOSITION 1. 

J~ 

The (G,t~) space (e,v)  is a (G,~)-boundary. 

i= l , . . . , r .  

We call the (G,/~) space (B, v) of Proposition 1 the natural boundary. 
A measurable bounded function h on G is called iz-harmonic if h ( g ) =  

f h (gg')tz (dg') for all g in G. We consider the space ~ of t~-harmonic functions, 

with uniform norm. A (G, tL) space (S, p) is called a Poisson boundary if there is 

an isometry u : ~ L| p) such that all harmonic functions have the following 

Poisson representation: 
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Our main result is the following: 

THEOREM A. Let G be a discrete subgroup of GL(d,R), ~ a probability 

measure on G satisfying Ea log IIg I I~(g)<  yo log I Ig- ' I I~gg)< and 

[..J,gupp t~ (") = G. 
Then the natural boundary (B, v) is a Poisson boundary. 

In particular we can specify: 

THEOREM B. Let ( G, tz ) be as in Theorem A. Suppose all exponents coincide 

A~ = An. Then all bounded harmonic functions are constant. 

L2. Entropy 

The proof of Theorem A uses several notions of entropy. 
First let us consider a countable group G and a probability measure/~. We put 

H(/z)  = - Y c / z ( g ) l o g / z ( g )  and if H ( / z ) <  + ~ ,  

h (G,/z) = inf 1 H(/x(,)) (see [1]). 
,, n 

Suppose G is a discrete group of matrices, /z a measure such that 

Ea log II g II/z (g) < + ~, Ea log II g- '  II tz (g) < + ~. We shall estimate h (G,/z) 

through some geometric quantity on the natural boundary (B, u). We need some 
technical definitions. Consider the sequence A~ = �9 �9 �9 _>- An exponents and let n, 8 
be positive real numbers. Two orthogonal matrices k and k' are said to be (n, 8) 
close if the general entry u~j of k-~k ' is such that for aI1 distinct values A, tx 

lu,.j I ~  e x p ( -  2n(IA - / z  r-  6)). 
{(i,i) I xi =x,xj=t~} 

Two points b and b' are said to be (n, 8) close if all orthogonal matrices k and 

k' in the class of b and b' respectively are (n, 6) close. The property depends 

clearly on b and b' in a symmetric way. We denote U,~(b) the set of points in 

B(n, 6) close to b, we call 

where 

dp (B, v,,6, e ) = inf { t limq~| v(E(t, q, 8)) _-> 1 - e} 

E(t,q, 6)={b u(Uq.8(b))>=exp-qt} 

and $(B, u) = lim,,.o lim,..o $(B, v, 8, e). 
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In other words &(B, u) is the best upper estimate for the limit in measure of 
-(l/q)logu(Uq,o(b)). (If d = 2 ,  )tl~)t2, we know that the sequence 
- ( l /q ) log  u(Uq,o(b))converges in measure [10].) 

PROPOSITION 2. Let G be a discrete group of matrices, tz a probability measure 

on G, with 

~, log Jig Jj/z(g)< +0% ~ log JJg--ll]/.~(g)< +oo, 
G G 

(B, v) be the natural boundary, then 

h(G, l~ ) < c~(B, u). 

On the other hand, let us consider a probability/x on a locally compact group 
G and ($, p) a (G, U)-space. We call entropy of (S, p) the quantity a($, p), 

a(S, p) = - L• log dg-1 p(x)p(dx)tx(dg). 
dp 

The entropy a(S ,p)  is positive, finite or infinite. 

PROPOSITION 3. Let IX be a probability on GL(d,R), with f log Jig Hl~(dg)< 

+0% flog IIg-'ll/z(dg)< +oo and (U, v) be the natural boundary. Then 

6 ( B , u ) ~ a ( B , u ) .  

Propositions 2 and 3 are the two entropy estimates we shall prove. Theorem A 
is then a clear consequence of Propositions 2, 3 and 4: 

PROPOSITION 4. Let G be a countable group and i~ a probability measure on O 
with H 0 z ) <  +oo and I,.J, supp/~ tn)= G. A (G,~)-space (S,p) is a Poisson 

boundary as soon as 
(i) (S, p) is a boundary, 
(ii) a(S,p) >- h(G,~).  

Proposition 4 is due to Vershik and Kaimanovich [8] (see section 3.2; see also 
[3]). 

We shall first recall Oselede~' theorem and prove Proposition 1 by construct- 
ing the natural boundary out of the filtration it gives. The proof of Propositions 2 
and 3 will then consist in translating geometrically on ~b (B, v) the estimates given 

by Oselede~' theorem. 

Remark now that if A1 = )td, P = G and B is reduced to a point. Any two 
orthogonal matrices are (n, ~) close and ~k = 0. Proposition 3 is then trivial but 
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Proposition 2 makes sense and says that h(G, I t ) =  0 in this case. Thus for a 

direct proof of Theorem B, section 1.3 and 2 are not needed and the arguments 
in section 3 are simpler. 

L3. Oselede~" theorem and proof of Proposition 1 

Let It be a probability measure on GL(d,R), with f log  [[g-tHIt(dg)< +oo, 
f log [I g [I It (dg)< + Qo and denote (~, P) the infinite product of Z-sequences of 
copies of (GL(d, R), It ), 0 the inverse shift transformation: (0~3)i = o3i_t, i E Z ,  
and A the matrix A ( t ~ ) =  (t5_1) -I. 

The exponents of the system ([I, P, 0, A )  are the numbers - Ad ----> -- A~-t ----> 

�9 "" > -- At. By Oselede~' theorem, there exists a subset Et of ~ ,  P(Et) = 1, such 

that if o3 E Et and if we write a Caftan decomposition of the matrix to-n--I.., o3-] = 

L, AnKn, where Ln and Kn are orthogonal, and An diagonal with increasing 
diagonal entries 8~n~(03)_-<... < 6~J(03), then: 

(i) lim 1 log A~, 1 . . . .  , d. 
. . . .  n = - j = 

(ii) Let K(&)  be any limit point of the sequence Kn(<o), then for all & K;'(oS) 
is (n,/5) close to K-t(o~) for n large enough. 

(iii) Let b(oS) be the class in B of K-1(o5). This is the only point b in B such 
that for any matrix v in the class of b, and for i = 1,... ,  r, 

, , m  �9 o : : , ) , o  ^ = 
pt~+| n /=1  

Some of these limits are strictly bigger for b #  b(o3). 

(iv) The map b : ~ ~ B is measurable with respect to the or-algebra generated 
by the coordinate maps ~ ---, ~_,, i > 0. 

(v) There exists a measurable decomposition of R d, R d= 
Wt(o3) ~) W2(o3) (]) . . .  (~ W'(a3) such that a vector v #  0 belongs to W~(o3) iff 

lim 1 log [[ ~ n " "  ~3oV H = A/, 
n~+~176 n 

and 

lim 1 log II o f  1. "'" o3-~v [[ = - A,,. 

Up to notations, Oselede~' theorem is proved in this precise form in [12] (see 

also [13] and [10] w Remark that here the diagonal entries in A. are 
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increasing and that is why the column vectors of K-1(05) give the Oselede~ 

filtration when read from left to right (and not from right to left as usually when 

the entries of A. are decreasing). 

Let us choose once and for all in a measurable way a matrix w(05) with column 

vectors w~(05), k = 1 . . . . .  d such that the vectors wk(05), k = ],-1 + 1 . . . . .  ], form 

an orthonormal basis of W:(05). A matrix v belongs to the class b(05) if[ there 

exists some p in P such that v = w (o~)p. 

We now use this result to prove Proposition 1. When proving Propositions 2 

and 3, we shall keep in mind the construction and the properties of the natural 

boundary that we describe now. 

We consider 6 : (~ x B defined by 

6(05, b) = (0-'05, 05ob) 

and the functions ~(05, b) --- cr~(05o, b). 

LEMMA 1. The measure 1(4(d05, db)=P(d05)&~,)(db) is the unique 6- 
invariant measure on (~ • B which projects onto ~ into the probability P and 

satisfies: 

[ " 
O,(05,b) (d05,db)= i -- 1 . . . .  ,r .  

j= l  

PROOF OF LEMMA 1. If /~  is any O-invariant probability measure on ~l x B, 

which projects into P, we have f o r / ~  a.e. (& b) any matrix v in the class of b, 

any i = 1 . . . . .  r: 

lira n n 

1 " - 
- - ~ 1  - - l i p  n r (05' b)) 

= a,(05, b) 

with f a~(05, b)M(d05, db ) = - f ~dl(4. 

Property (iii) above tells that these limits can be - E~=~ ,~j only if for P-a.c. o3, 

the conditional measure M~ is carried by b(05). The only possible measure is 

thus ~4(d05, db ) = P(d05 )&(~,)(db ). 
This measure is invariant because b(005)= 05-11b(05) and consequently: 

f f. = j_/(0-105, 05ob(05)) (a05) = f/(05,05_,b(O05))P(a05) 
-f f 
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We prove now Proposition 1: consider the compact space B. By compactness 

there exist/x-invariant probability measures on B and for any such measure u, 

we make the following construction. 

Let us project (l • B on fl  • B by 7r, where (12,P) denotes the one-sided 

product space corresponding to the positive coordinates in (12, P). There is a 

unique/~-invariant measu re /~  on (1~ x B) such t h a t / ~  o 7r-' = P • u. Therefore 

by Lemma 1 there is at most one invariant measure u such that the correspond- 

i n g / ~  satisfies f ~,dIQ = Y~,=, Xj. 

This proves the uniqueness of u because #~ factorizes in ~r~ by ~'. This proves 

also the existence of u because by property (iv) the measure /Qo~r- '=  

(P&)olr  ~ is the product measure P x  u of P and the law u of b. 

Furthermore the actual construction o f /Q  by extending successively P x u to 

all ~r-algebras 0"~'-~(,d @ ~3) gives that the martingale of conditional measures 

o3_1 �9 �9 �9 o3_,u converges P-a.e. towards the conditional measures of/Q, i.e. &(,~). 

This shows that (B, u) is a boundary, because under P, the sequence {o3_~, i > 0} is 

also an independent sequence of matrices with common law /z. 

This finishes the proof of Proposition 1. We also know that the measure u is 

the law of the point b (a3) considered in OseledeU theorem. Remark also that by 

construction the systems (~ • B,/Q, 0) and (12 • B, P x u, 0) are ergodic. 

II. Dimension estimate 

2.1. Geometry of B 

We fix in this section a sequence A1 _>- �9 �9 �9 >- A~ and consider the corresponding 

space B and the corresponding notion of (n, 8) closeness on B. We prove several 

properties of these objects; CI, (?2, C3 will be constants depending only on d and 

on the fixed sequence A1 => �9 �9 �9 --> A~. 

Let K be the group of orthogonal matrices, M =  K N P; the Iwasawa 

decomposition of matrices GL(d, R) = K A N  identifies P with M A N  and B with 

K/M. A point b in B is thus identified with the class kM of orthogonal matrices 

in b. 

LEMMA 2. The points b and b' are (n, 8)-close as soon as there is some pair 

(k, k') of orthogonal matrices in the classes b and b' respectively, and k and k' are 

(n, 8)-close. 

The proof is easy: it consists in checking that if k and k' are (n, 8)-close, m 

and m'  are matrices in M, km and k'm'  are also (n, 8) close. �9 
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A subset E of B is called (n, 8) separated if any two distinct points in E are 

(n, 3) apart. Recall that U,,~(x) is the set of points (n, 3) close to x. 

LEMMA 3. There exist constants C1, C2 such that if E is ( n, 3 ) separated, and x 

any point in B, then U,,~ (x) contains at most C~ C~ ~ points of E. 

PROOF. Let b and b' be points in U,,8 (x) and k and k' orthogonal matrices 

such that 

b = kM, b '= k'M. 

We claim that if the general entry w~j of x-~(k ' -  k)  satisfies 

I w,, I =< 1 exp( - n [ A, - A, I) for 1 =< i, j =< d, 

then b and b' are (n, 3)-close. 

Actually we have 

k - ' k ' =  k- 'xx-~k '= I d +  k-~x(x ~(k ' -  k)). 

If v0 (respectively uo) is the general entry of k-~k ' (respectively k-~x), and if 

)t, ~ are two distinct real numbers, 

I 12 
{(i,DIAj =A,A/=it } {(i,j)IA i =A,A i =.~} 

< 1 i:exp(_2nltt x~[) 

< - - 2  2 e + 2 e-2"'"-"' 
{kiXk,~x} {klXk=A} 

This implies that k and k' are (n, 3) close and the claim follows by Lemma 2. 

For any e in E f) U,,~ (x) the general entry u 7j of the matrix x-t ke satisfies: 

]uTjl=<exp( - n [A,-A,  1+ nS). 

Therefore by the claim, for any i, j, 1 =< i, j < d, the sequence {u~, e E E} can 
take only 2de "8 different values. There are at most (2de"8) a2 different possible e 

in E f3 U,~(x). This proves Lemma 3 with C~ = (2d) ~2, log Cz = d 2. �9 

LEMMA 4. Let v be a probability measure on B, 3 > 0, e > 0. For n large 

enough, there is a set E. with 

v(U,,~(E.))>= I - e ,  

1_ 
log card En ~ 4) (B, v, 3, e ) + 3 + 3 log C2 + 1 log C1. 

n 
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ProoF. By definition of 4,(B, v, 6, e)  = 4,, for n large enough, 

v(E(4, + 8, n, 8))==_ 1 -  e. Let us choose E,  a maximal (n, 8) separated set in 

E(4 ,  + & n ,  8).  
By maximality U~., (E, )  contains E (4' + 8, n, 8) and thus v (U,,, (E,))  => 1 - e. 

By definition of E(4 '  + 8, n, 6), we have: 

cardE.e  -"(*+')< ~ v(U. ,s(x))  
x~E~ 

card{E. N U,,, , (y)}v(dy) 

_-< C~C~ ~ by Lemma 3. �9 

Lemma 4 will be used in the proof of Proposition 2 (see section 3.1); the 

following lemma is basic in the proof of Proposition 3. When r > 1, we denote 

p = inf{Aj, - A,,+, I i = 1 . . . .  , r - 1}. 

(Remember  Proposition 3 is trivial if r = 1.) 

LEMMA 5. Let us suppose r > 1 and consider m > 1, 0 < X < p/12. 

Let  u be some matrix, with column vectors u l , . . . ,  ua such that for all 

p = l  . . . . .  d, all p-uples O < i, < i2 < . . . < ip <= d, 

l l~ ]] u', ^ " " ^ u', l] - ~ A' l <= 

Write u = kan the Iwasawa decomposition of u, t,i the general entry of an. There 

exists a constant C3, such that for all (i, j )  with A, >= At 

I 1 12- ,1 log J t,i < 2X + C3 
{tl =A,} m 

PROOF. We construct the Iwasawa decomposition and consider the matrix 

t = k - l u .  

It has the following properties: 

t , j - -Oif  i > j  and for a l l p = l  . . . . .  d, a l l O < i l < i 2 < . . . < i p _ - < d ,  

II t,, ^ . . .  ^ t,~ II = II u,, ^ . . .  ^ u,~ II. 

This implies for i -< _ jr, II tl JJ = II ul I[ and therefore 
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Put C(X)  = (1 - e-("-3x)) -t and consider  j > j," 

II t ,  ^ t= , , . . .  ,, t,, ^ t, II < ~,-m(#-3x) 
I[ttAt2A'''^t,,]l lit, II - - ~  

and this means  that most of the norm of b is achieved by the first j, coordinates .  

More  precisely: 

Hence :  

1 logs I t , , l ~ - . ~ ,  < = x +  l ~  
i = t  m 

and this est imates the first jt lines of t. 

Let  k = 1 , . . . ,  r - 1. The  (d - jk • d - j~) matrix t '  obta ined by erasing the first 

jk lines and columns of t has the following propert ies:  

t',j = 0 if i > j ,  j k < i , j < d  

and for all p = 1 , . . . ,  d - jk, all p-uple  (it . . . . .  ip) with jk < it < i2 < " "  < i e < d, 

t;.I '=lltt A L  t2A " ' ^  ti~ ^ t~tA "''^1 t,,ll IIt;lA �9 Q ~ A 

II t, ,, t= ,, " " ,, t,. I 

In o ther  words the matrix t '  satisfies the same family of relat ions as t with 

exponents  L~+, => �9 �9 �9 => ha and er ror  2X. 

We get in the same way for j~ < j =< jk.t 

i ik+, t 1 
~mm log E It,, I ~- ~,k --< 2x 

i =ht +1 

and for j > ]k 

[1 I ~mm log I t,, 12- x,k --< 2x 
i =  1 

The  lemma follows if C3 = - log(1 - e-"/:). 

+ log C(2X) 
m 

2.2. Proof of Proposition 3 

We suppose in this section that  /z is a probabil i ty measure  on GL(d ,R) ,  

satisfying ylogllgll~(dg)< +oo, y l o g  lig-'llt~(dg)< +0% we consider  the 
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natural boundary (B, v) and are going to prove that ~b(B, v)<= a(B,  v). The idea 

of the proof is the same as in dimension 1 ([10] w a typical product ton . . .  tOo 

sends some set of fixed positive measure into some Un., and dtO, . . .  tOov/dv is 
roughly e x p ( -  na(B,  v)). This is possible only when qb(B, v) < a(B,  u). To do 

this, we first apply Oselede~' theorem, as stated in section 1.3 and we consider 

the map b from E 1 C ~  into B we defined there. 

LEMMA 6. There exists a measurable map u : E1--~ GL(d, R) such that 

(i) u(05) belongs to the class of b(05), 

(ii) for all p, 1 <= p <= d, all p-uple 0 < il < i2 < "  "< ip <= d, 

lim l l o g  [(/~(05~' ' '05o))(U,,(05)A'' 'Au,p(05)) = ~ A , .  
n ~ + ~  n 1=1 

PROOF. Remember  that we choose in a measurable way a matrix w(05) such 

that its column vectors are in the spaces Wi(05). A matrix u satisfies (i) iff 
u(05) = w(05)q(05) for some q(o3) in P. Choose some fixed matrix q in P such 

that for all p, 1 < p < d, the determinants of all the (p x p) square matrices made 
out of the first p lines of q are never zero. The matrix u(05)= w(05)q satisfies 

also (ii). �9 

Fix o3 in E~; the set of matrices satisfying Lemma 6(ii) is open in GL(d, R) and 

there is a smaller neighborhood of u(05) where the convergences are uniform. 

The condition ti v-~ II < 2 It u- '  (tO)tl is also open and the projection from GL(d, R) 
into B is open. Consequently: 

COROLLARY 1. For all 05 in E,, there exist a neighborhood 0(05) of b(05) in B 

such that for X > O, there exists N (05, X) and for all b in 0 (05) there exists a matrix 

v in the class b satisfying I[v-' 11<211u-'(tO)ll and for all n >-- N(05, X), all p, 

l <= p <= d, all p-uple O < i, < . . . < ip <= d, 

1 �9 �9 �9 05o)) (v,, vip) l-~A,[<--?r I n l o g  ( ~x (05n A ' ' ' A  = 

LEMMA 7. Fix8 >0 ,  e >0 .  There exists an integer N such that for all n >= N, 

P({05n-,""" 05o0(05)C U,.8(b(O-'05))})>= 1 - el2. 

PROOF OF LEMMA 7 (compare with [10] lemma 111.4.5.). We first choose N1 by 

Corollary 1 such that P(A1) -> 1 - el6, where A1 = {03 [ N(05, 8/40d) = < N1}. For 05 
in A~, b in 0(03) and n _-> N1 there exists a matrix v in the class b satisfying the 

conclusions of Corollary, 1. 
Choose also N2 such that P(A2)_- > 1 -  e/6, where 
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< 8 
A2=  {05 I Iog2ll u-'(05)ll = N21--~ } 

and u(05) is given by Lemma 6. 

Write also a Cartan decomposition of the matrix - - '  - -' O . ) n  " " " 6 0 - 1  = 

L.(05)A.(05)K.(05). By 1.3 there exists n(05) such that if n => n(05) and K(05) is 

any orthogonal matrix in the class b(05), 

F l~ < lOd' 

1 '") - = - I L  - A, I+ 10--'--d' log I .  < 

where 8~")(05) are the diagonal entries of A.(05), ( " ) -  u0 (to) the entries of 
K,(05)K(05). 

Choose N3 such that P(A3)_- > 1 - e / 6  where A~={05 In(05) < X3}. Choose 
now N bigger than N~, N2, N3, 20C3d/6, and (2 log C4)/6, C4 = d ! d 2~, and for 
n _-> N take o3 in A~ N A2N O"A3. 

Lemma 7 is proved if we show that for all b in O(05),05.-1""050. b is 

(n, 6)-close to b(0-"05). 
Choose v in b according to Corollary 1. We thus have to estimate the entries 

Sq of the matrix k-IK(O-"05), where k is the orthogonal term in the Iwasawa 

decomposition of 05,-1"" 05or = kt. 
We get 

k- i= tv-105o 1 --1 
�9 . �9 O J n _  1 

- 1  - n  - - n  - - n  - =tv L.(O to)A.(0 to)K.(O to). 

By Lemma 5, Corollary 1 and our choice of N, the entries tij of the matrix t 

satisfy t~i = 0 for i > j  and I t,~ I f  exp n(A~ + ~ /10d) fo r  i<=]. 
By Corollary 1 and our choice of N, the entries xo of v-lL.(O-%) satisfy for 

all i, j 

]x~ !_  -< exp n(6/lOd). 

;~"~ and " ~") are also valid. (Remember  By our choice of N, the estimations on ~, u ~i 

0-"05 E A3.) 

We get finally for i > j :  

S q  ~ ,  ( . )  - n  - (~) - .  - = t, . , )U . . ' , (O  a , )  
m ffi 1 , . . . , d  
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and 

Is,,I --< E 
k>-i 

m=l, . . . ,d  

e nXie -"~e -" ix,-x i e 4,~/iou 

d2e4"~/t~ .(xcA j) 

because A,. + I Aj - A,. [ > Aj for all m. This gives estimates for the entries of 

k-IK(O-"03) below the diagonal. Since it is an orthogonal matrix, we find for all 

entries S~.~: 

[ S~j ]<= (d - 1)!d2d e 4"~'~~ e-"l~,-~, ~ 

_<1 e,~e_nl~_V by our choice of (?4 and N. 
- d  

This proves that the matrices k and K(0-"03) are (n, 6)-close. By Lemma 2, 

this achieves the proof of Lemma 7. �9 

LEMMA 8. For P-a.e. 03, 

a (B, v) > lim sup  - 1 log v (o3._1... o30 O (03)). 

PROOF OF LEMMA 8. We apply the ergodic theorem to the system (II x B,P x 

v, 0) and the function - log(dtoo~v/dv)(b). We get P x v a.e. and in LI(P • v): 

,-1 dto;-lv, b) lim-  log-7= to, , . . .  too. 

-1 

= lim. _ ln  log dto~ to._,v (b). 

Call E2 the set of to in fl  such that the sequence of classes of functions on B 

{ l_n dto~ -1 } log "d~-,to"-lV(b), n > 0  

converges v-a.e, and in Ll(v)  towards a(B, v). We have P(E2) = 1. 

Now if Ir(03)E E2 and v(O(03))>0,  we have: 

Io -' 
a(B, v) = lim 1 1 log dto~ to"-IV(b)v(db) 

o n v(O(oS)) ,~ d~ 

and therefore the conclusion of Lemma 8 is true for such an 03. 
For P-a.e. 03, r E2 because Pow- '  = P ,  and for P-a.e. 03, v((O(03))>0 
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because 0(03) is a neighborhood of b(03) and the law of b is u. This achieves the 

proof of Lemma 8. II  

Proposition 3 follows now clearly from Lemmas 8 and 7: fix 6 > 0, e > 0. If n 

is large enough, we have on a set of probability bigger than 1 -  e/2 

v(03.-1 ' ' '  0300(03))_-> e x p ( -  n(c~ (B, v )+  e )) 

and we also have on a set of probability bigger than 1 - e/2, if n is large enough, 

03,,-1"-" 03oO(03) C U,.~(b(O-%)). 

In other words (remember the definition of (k) if n is large enough, there is a 

set of probability bigger than l - e ,  such that b(O-%) belongs to 

E(a (B ,u )+e ,n ,  8). Since the law of b(O-%) is also v, this means exactly 

~b (B, u, ~, e)  _-< a (B, u) + e. Proposition 3 follows from the arbitrariness of & e. 

III. Entropy of discrete groups 

3.1. Entropy estimate 

We suppose in this subsection that G is a discrete subgroup of GL(d, R) and 

we consider on GL(d ,R)  the following pseudo-distance d: 

d(gb g2) = max(log [Iglg~ 1 [I, log IIg2g7 111). 

We shall use discreteness of G only through the following property: there 

exists a constant (?5 such that a subset of GL(d, R) of diameter L contains less 
than C~ elements of G, if L => 1. 

PROPOSmON 5. Let G be a discrete subgroup of GL(d, R), tz a probability 
measure on G such that 

log [ ]g l l~ (g )<  log [Ig- ' l t /~(g)< + ~ .  

Then - E/~ (g) log/.L (g) < oo. 

The proof of Proposition 5 is straightforward: call Gn the set of elements g of 

G such that n -< d (e, g) < n + 1, and set/~, =/~ (G.). We have E~ n ~  < + ~ and 

H(/~) can be bounded by 

- E/~n log/~, + E / ~ n  log(card G,)<_- - E/~-log/.~n + log C5 ~', (n + 1)/~, 
n n n n 

< + ~ .  �9 
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By Proposition 5 we can define 

h(G, /~)  = inf 1 H(~,~)" 
- n 

LEMMA 9. Let X be an orthogonal matrix, h l >_ . . . >- hd real numbers, 8 > O, 

n => (log d)/8;  there are less than C~ ~ elements of G which can be written LAK,  

with L and K orthogonal, A diagonal, K- ' (n ,38)  close to X, and 

1 log 8j + hj =<8, j = l  . . . .  ,d. 

PROOf. We have only to check that the diameter of the set of matrices L A K  

satisfying these properties is smaller than 10ha. Let g~ = L,A,K, ,  g2 = L2A2K2 be 

two such matrices. We have 

[[ g,g2 ~ II = II L,A,K,K2'A~_'Lj '  II 

= [IA,K, X X - ' K 2 ' A ;  ' II. 

The general entry of K I X X - ' K ~ '  is smaller than 

d 

E e x p [ - n ( I L - - A k  I+IA~ - a ,  1-68)]  =< e x p [ - n ( l X , - h i  1 -78) ]  
k = l  

and thus 

log IIg,g~' I1=< 10n8 + s u p I -  n( l~ ,  - ~; I -  ~; + A,)] 
i , i  

< 10nS. 

The computation is the same for II g2g;' II. �9 

We are going now to prove Proposition 2. We consider a probability measure 

/z on G such that Ec, log IIg II/~(g) < +oo, ~o log IIg ' [ I t z (g )<~ .  

We apply 1.3 and consider the natural boundary (B, v) and the product space 

(~,P).  We know that v is the law on B of some variable b. 

By Proposition 5 and the subadditive ergodic theorem, at P-a.e. ~5: 

l im- l logP{~0 ' [oJ '_~ '  .w'_; 1 - ' - - '  1 �9 . = oJ_,. .-~o_,}= lim - -  Iogtz~)(o3_,.-. o3_,) 
n ~ + ~  n ~ + ~  n 

= h(O,/.t). 

If we write again the Cartan decomposition of the matrix 

- - I  - -  - I  o~ . . . .  ,o_1 = L . (o~)a . (o~)g . ( , z )  
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we have estimates on the diagonal terms of A.(O3) and of the (n, 8) closeness of 
K.~(O3) and X(oS)~ b(o3)when n is large enough. 

Fix 8 > 0, 0 < e < �88 By Lemma 4 if n is large enough, there exists a set E. 
with v(U. ,~(E.) )  >- _ 1 - e and 

card E,  <= C~ C~_Se"~e"*~B'~). 

Putting all these properties together, we have if n is large enough, P(fL(n))=> 
1 - e, i = 1,2, 3, 4, where: 

{ ~  I the diagonal terms 6~")(N) of A. (~) satisfy ] 
~ , ( n )  = I 

I(1/n)log 8J")(o~) + a,I --< & j = 1 . . . .  , d 

a~(n) = {o3 I K:'(o~) is (n, 8) close to any orthogonal matrix in b (o3)}, 

~~3(n) = {O3 I b(o3)  E U . . ~ ( E . ) } ,  

[]4(n) =/o3 [ IX(")(O3 , ' ' "  O3-~)----< e "h(a'")e"~}. 

If n _-> (2 log d) /& for any o5 in fl2(n)N ~L(n), there exists some x in E, such 
that K.~(O3) is (n,38) close to any orthogonal matrix in x. 

Fix x in E., X orthogonal matrix in x and call flx the set of o5 in n l  fL(n) 
such that K;J(O3) is (n,38) close to X. 

By Lemma 9, P(~)_-< C~""~e "h~'")e"~. Therefore we have, if n is large 

enough, 

1 - 4 e  - - < P ( 9  " , ( n )  ) 

x E E  n 

~ C I  ~'-'21"~ncSan6~ntb(B'V)l"~lllnSr-" t:, ~'-~5 e -nh(G.tx)~ nSr., . 

We get by letting n go to infinity 

oh(B, u) - h (  G, Ix) >--- - 6(2 + log C2C~ ~ 

and Proposition 2 follows from the arbitrariness of 8. 

3.2. K a i m a n o v i c h - V e r s h i k  results and Proposition 4 

Consider a countable group G and a probability IX on G, U ,  supp Ixc.) = G. 
We recall Kaimanovich-Vershik results [8] leading to Proposition 4. 

To every (G, IX) space (S, 8) they associate its Radon-Nikodym transform. It is 
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a compact metric (G,/x) space (E,A) isomorphic as a measure space to the 
quotient of (S, p) by the measurable partition generated by the Radon-Nikodym 
derivatives Ag on $, g E G: 

Ag(s) ----- --~p (s) p-a.e. 

They also construct abstractly the Poisson boundary (F, u), prove that 

a(S,p)<=h(G, tz) forall(G, tx)space(S,p) 

and that if a(S,p)=h(G, tz), then the quotient map from (S,p) to its 
Radon-Nikodym transform (E, ;t ) factorizes through (F, v) ([8] Theorem 3.2). 

If (S, p) is a boundary, the function Ag, g E G separate p-a.e, point and thus 
the quotient map defining (E,A) is an isomorphism. 

Under the condition of Proposition 4, (S, p) is therefore isomorphic to (F, v), 
in other words (S, p) is a Poisson boundary. 
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